28 research outputs found

    Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Get PDF
    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format

    Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    Full text link
    Abstract Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and challenge pathogen strain) change. It is suggestive that it is difficult to protect against aerosol challenge. Somewhat counter-intuitively, our results indicate that intraperitoneal and subcutaneous vaccinations are much more effective to protect against aerosol Brucella challenge than intranasal vaccination. Conclusions Literature meta-analysis identified variables that significantly contribute to Brucella vaccine protection efficacy. The results obtained provide critical information for rational vaccine study design. Literature meta-analysis is generic and can be applied to analyze variables critical for vaccine protection against other infectious diseases.http://deepblue.lib.umich.edu/bitstream/2027.42/112497/1/12859_2013_Article_5801.pd

    Protegen: a web-based protective antigen database and analysis system

    Get PDF
    Protective antigens are specifically targeted by the acquired immune response of the host and are able to induce protection in the host against infectious and non-infectious diseases. Protective antigens play important roles in vaccine development, as biological markers for disease diagnosis, and for analysis of fundamental host immunity against diseases. Protegen is a web-based central database and analysis system that curates, stores and analyzes protective antigens. Basic antigen information and experimental evidence are curated from peer-reviewed articles. More detailed gene/protein information (e.g. DNA and protein sequences, and COG classification) are automatically extracted from existing databases using internally developed scripts. Bioinformatics programs are also applied to compute different antigen features, such as protein weight and pI, and subcellular localizations of bacterial proteins. Presently, 590 protective antigens have been curated against over 100 infectious diseases caused by pathogens and non-infectious diseases (including cancers and allergies). A user-friendly web query and visualization interface is developed for interactive protective antigen search. A customized BLAST sequence similarity search is also developed for analysis of new sequences provided by the users. To support data exchange, the information of protective antigens is stored in the Vaccine Ontology (VO) in OWL format and can also be exported to FASTA and Excel files. Protegen is publically available at http://www.violinet.org/protegen

    Endocytic profiling of cancer cell models reveals critical factors influencing lipid nanoparticle mediated mRNA delivery and protein expression

    Get PDF
    Lipid nanoparticles have great potential for delivering nucleic acid-based therapeutics, but low efficiency limits their broad clinical translation. Differences in transfection capacity between in vitro models used for nanoparticle pre-clinical testing is poorly understood. To address this, using a clinically relevant lipid nanoparticle (LNP) delivering mRNA we highlight specific endosomal characteristics in in vitro tumour models that impact on protein expression. A 30-cell line LNP-mRNA transfection screen identified three cells lines having low, medium and high transfection that correlated with protein expression when they were analysed in tumour models. Endocytic profiling of these cell lines identified major differences in endolysosomal morphology, localisation, endocytic uptake, trafficking, recycling, and endolysosomal pH, identified using a novel pH probe. High transfecting cells showed rapid LNP uptake and trafficking through an organised endocytic pathway to lysosomes or rapid exocytosis. Low transfecting cells demonstrated slower endosomal LNP trafficking to lysosomes, and defective endocytic organisation and acidification. Our data establishes that efficient LNP-mRNA transfection relies on an early and narrow endosomal escape window prior to lysosomal sequestration and/or exocytosis. Endocytic profiling should form an important pre-clinical evaluation step for nucleic acid delivery systems to inform model selection and guide delivery system design for improved clinical translation

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Prolonged depression of knee extensor torque complexity following eccentric exercise

    Get PDF
    Neuromuscular fatigue reduces the temporal structure, or complexity, of muscle torque output. Exercise-induced muscle damage reduces muscle torque output for considerably longer than high-intensity fatiguing contractions. We hypothesised that muscle damaging eccentric exercise would lead to a persistent decrease in torque complexity, whereas fatiguing exercise would not. Ten healthy participants performed five isometric contractions (6 s contraction, 4 s rest) at 50% maximal voluntary contraction (MVC) before, immediately after, 10, 30 and 60 minutes, and 24 hours after eccentric (muscle damaging) and isometric (fatiguing) exercise. These contractions were also repeated 48 hours and one week after eccentric exercise. Torque and surface EMG signals were sampled throughout each test. Complexity and fractal scaling were quantified using approximate entropy (ApEn) and the detrended fluctuation analysis ? exponent (DFA ?). Global, central and peripheral perturbations were quantified using MVCs with femoral nerve stimulation. Complexity decreased following both eccentric (ApEn, mean (SD), from 0.39 (0.10) to 0.20 (0.12), P < 0.001) and isometric exercise (from 0.41 (0.13) to 0.09 (0.04); P < 0.001). After eccentric exercise ApEn and DFA ? required 24 hours to recover to baseline levels, but only 10 minutes following isometric exercise. MVC torque remained reduced (from 233.6 (74.2) to 187.5 (64.7) N.m) 48 hours after eccentric exercise, with such changes only evident up to 60 minutes following isometric exercise (MVC torque, from 246.1 (77.2) to 217.9 (71.8) N.m). The prolonged depression in maximal muscle torque output is therefore accompanied by a prolonged reduction in torque complexity

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Salmeterol and cytokines modulate inositol-phosphate signalling in Human airway smooth muscle cells via regulation at the receptor locus

    No full text
    Abstract Background Airway hyper-responsiveness (AHR) is a key feature of asthma and a causal relationship between airway inflammation and AHR has been identified. The aim of the current study was to clarify the effect of proinflammatory cytokines and asthma medication on primary human airway smooth muscle (ASM) inositol phosphate (IPx) signalling and define the regulatory loci involved. Methods Primary Human ASM cells were isolated from explants of trachealis muscle from individuals with no history of respiratory disease. The effect of cytokine or asthma medication on histamine or bradykinin induced IPx signalling was assessed by [3H] inositol incorporation. Quantitative Real Time PCR was used to measure mRNA levels of receptors and downstream signalling components. Transcriptional mechanisms were explored using a combination of 5'Rapid Amplification of cDNA Ends (5'RACE) and promoter-reporter techniques. Results Treatment of Human ASM cells with IL-13, IFNγ or salmeterol for 24 hours lead to a modest augmentation of histamine induced IPx responses (144.3 +/- 9.3, 126.4 +/- 7.5 and 117.7 +/- 5.2%, p i.e. H1 Histamine Receptor (HRH1), B2 Bradykinin Receptor (BDKRB2), Gαq/11 and PLC-β1 identified that a significant induction of receptor mRNA (>2 fold) was a feature of these responses explaining the cytokine and spasmogen specificity. The HRH1 and BDKRB2 promoter regions were mapped in ASM and promoter-reporter analyses identified that salmeterol can induce HRH1 (>2 fold) and BDKRB2 (2–5 fold) transcription. The effect of cytokines on HRH1 and BDKRB2 promoter-reporter expression suggested a more complex regulation of mRNA expression involving additional loci to the core promoter. Conclusion Our results indicate that the spasmogen specific receptor locus may be a key site of regulation determining the magnitude of spasmogen mediated ASM IPx responses during airway inflammation or following asthma medication. These data provide further insight into the molecular basis of AHR and extend our understanding of potentially detrimental effects associated with existing therapies used in the treatment of asthma.</p
    corecore